Facile Enzymatic Synthesis of N-Acyl-enkephalin Amides

Iqbal Gill and Evgeny N. Vulfson*

AFRC Institute of Food Research, Reading Laboratory, Reading RG2 9AT, UK

A novel three step protease catalysed synthesis of enkephalin precursors from simple readily available substrates is described.

In recent years a wide range of endogenous bioactive peptides have been isolated, characterized and synthesized.¹ Although most peptides are currently prepared by solution or solid phase chemical methods,² enzyme catalysed syntheses ³ have become increasingly important, and preparative scale methodologies have been developed for a number of oligopeptides such as angiotensin, caerulin, cholecystokinin, dynorphin,⁴ enkephalins and other opioids.

Since their discovery in 1975,⁵ the enkephalins have attracted much interest as a class of potent analgesics.⁶ A number of linear and convergent protease-catalysed syntheses of endogenous opioids have been reported.⁷ However, these have all employed multistep methodologies with complex protection/deprotection schemes, leading to poor overall yields and limited scope for their preparative scale application.[†] In this communication we describe an efficient, highly simplified enzymic synthesis of a range of Leu- and Met-enkephalin derivatives in organic media.

Following our observation that the specificity of α chymotrypsin towards *N*-unprotected amino acid esters is greatly increased in low-water media,⁸ L-PheOEt was used as acyl donor for the synthesis of the *C*-terminal dipeptide fragments of Leu- and Met-enkephalin (Scheme 1, Table 1). Compounds **4a** and **4b** were prepared in 89–90% yields using **2a** and **2b** as amino components respectively. A range of *N*acylated *N*-terminal tripeptides **3a**-c were also synthesized in 88–89% yields from **1a**-c by this method. Finally, the direct coupling of the two fragments gave the final products **5a**-c in

⁺ Chymotrypsin, carboxypeptidase Y, papain, and thermolysin have been used in syntheses typically involving 7 to 13 steps, with yields ranging from 6 to 17%.

[‡] For full details of the BLDSC deposition scheme see 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 1, 1992, Issue 1.

Table 1 Protease-catalysed oligopeptide synthesis

overall yields of 45-59%. This compares very favourably with the yields obtained by conventional solution phase chemical syntheses.⁹

This novel methodology has several distinct advantages over reported syntheses: (i) The use of an *N*-unprotected substrate as

		••••					
Product ^a	Scale (mmol)	Time (h)	Yield (%)	M.p. ^b (°C)	[α] ²⁰ ε	FAB-MS (M + H), obsvd. ^{d}	(M + H), calcd.
3a	15.6	60	89	194–196	+ 31.4	366.171 42	366.166 49
3b	12.5	60	88	174–177	+ 22.3	420.149 75	420.138 22
3c	18.7	60	89	169-171	+8.1	458.201 46	458.192 71
4 a	30.0	40	90	125-127	-22.3	278.187 23	278.186 84
4b	20.3	60	89	148-150	-13.2	296.141 96	296.143 26
5a	1.55	60	66	154-156	+9.5	597.300 35	597.303 64
5b	1.44	60	51	197–199	+10.6	651.275 25	651.275 37
5c	1.36	60	60	185-187	-13.2	689.333 42	689.329 85
5d	3.24	80 <i>°</i>	54	174–176	-12.2	707.292 76	707.286 27

^{*a*} Preparations: equimolar quantities of acyl and amino components (free bases) were dissolved to a final concentration of 250 mmol dm⁻³ in 9:1 acetonitrile–ethanol containing 4% water (**3a–4b**) or in 94:3:3 acetonitrile–ethanol–formamide to a final concentration of 50 mmol dm⁻³ (**5a–5d**). α -Chymotrypsin (**3a–4b**) or proteinase K (**5a–5d**) adsorbed on Celite, as previously described,¹⁰ was added to a final concentration of 100 or 200 mg cm⁻³ respectively, and the mixture was shaken at 37 °C. The reaction mixture was then filtered, treated with 2.0 g of Dowex 50X4 (**5a–5d** only), rotary evaporated and purified by reverse phase low-pressure chromatography on Sorbsil RP18, C200 using a methanol-water gradient. Satisfactory elemental analyses (±0.6% for C,H,N) were obtained for **3c**, **4a**, **4b**, **5c** and **5d**. In addition all products were fully characterized by 400 MHz ¹H NMR, 100 MHz ¹³C-NMR, COSY and NOESY spectroscopy. Spectra agreed well with literature data.¹⁰ Experimental details and physical data for compounds **3–5** are available from the British Library as a supplementary publication (SUP. PUBL. NO. 56875).^{‡ b} Lyophilized products. ^c c = 1.0, MeOH for **3a–5b**; c = 1.0, 9:1 MeOH–HCONH₂ for **5c**, **5d**. ^d & keV Xe, Glycerol matrix. ^e After 40 h of incubation the enzyme was filtered off, a new batch of proteinase K was added and the incubation continued for a further 40 h.

the acyl donor and an amino acid ester as the acyl acceptor * in the synthesis of corresponding C- and N-terminal oligopeptide fragments allows direct coupling, without the need for deprotection and activation; (ii) acyl donors and acceptors were used in a 1:1 molar ratio, thus minimizing work-up procedures † that are normally required in conventional syntheses employing an excess of acyl or amino component; ‡ (iii) the use of organic media allowed the synthesis of di- and tri-peptide components at high concentrations.§ This work demonstrates the considerable simplification that can be achieved compared to conventional protocols utilizing enzymes. Combined with the well-documented advantages of protease-catalysed peptide synthesis in organic solvents,¹⁰ such as high solubility of reactants, greatly reduced hydrolysis and dispensation with side chain protection, this methodology provides an attractive approach to the preparative scale synthesis of bioactive peptides.

‡ Enzymatic and solution phase chemical syntheses have typically employed 10-100% excess of amino component and 10-50% excess of acyl component respectively.

§ Substrate concentrations up to 1.0 mol dm⁻³ could be used without adversely affecting kinetics or yields.

References

- 1 (a) M. W. Steward and C. R. Howard, Immunol. Today, 1987, 8, 51; (b) J. A. Smith and L. G. Pease, CRC Crit. Rev. Biochem., 1980, 8, 315.
- 2 (a) G. Barany and R. B. Merrifield, The Peptides, vol. 2, Academic Press, New York, 1980, p. 1; (b) S. B. H. Kent, Ann. Rev. Biochem., 1988, 57, 957.
- 3 (a) W. Kullman, Enzymatic Peptide Synthesis, CRC Press, Florida, 1987; (b) J. S. Fruton, Advances in Enzymology, vol. 53, Wiley, New York, 1982, p. 239; (c) H.-D. Jakubke, P. Kuhl and A. Könnecke, Angew. Chem., Int. Ed. Engl., 1985, 24, 85; (d) K. Morihara, Trends Biotechnol., 1987, 5, 164; (e) A. L. Margolin and A. M. Klibanov, J. Am. Chem. Soc., 1987, 109, 3802; (f) J. B. West and C.-H. Wong,

Tetrahedron Lett., 1987, 28, 1629; (g) F. Widmer, K. Breddam and J. T. Johansen, Carls, Res. Comm., 1980, 45, 453; (h) C.-H. Wong, J. R. Matos, J. B. West and C. F. Barbas, Developments in Industrial Microbiology, vol. 29, Society for Industrial Microbiology, 1988, pp. 171; (i) K. Nakanishi, Y. Kimura and R. Matsuno, Biotechnology, 1986, 4, 452; K. Nakanishi and R. Matsuno, Synthetic Peptides in Biotechnology, Alan R. Liss, Inc., 1988, p. 173; (j) H. Kitaguchi and A. M. Klibanov, J. Am. Chem. Soc., 1989, 111, 9272

- 4 (a) Y. Isowa, M. Ohmori, M. Sato and K. Mori, Bull. Chem. Soc. Jpn., 1977, 50, 2766; (b) H. Takai, K. Sakata, N. Nakamizo and Y. Isowa, Peptide Chemistry, Protein Research Foundation, Osaka, 1981, p. 213; (c) W. Kullmann, Proc. Natl. Acad. Sci., U.S.A, 1982, 79, 2840; J. Org. Chem., 1982, 47, 5300.
- 5 J. Hughes, T. W. Smith, H. W. Kosterlitz, L. A. Fothergill, B. A. Morgan and H. R. Harris, Nature, 1975, 258, 577.
- 6 (a) R. J. Miller and P. Cuatrecasas, Adv. Biochem. Psychopharm, vol. 20, Raven Press, New York, 1979, p. 187; (b) Y. Shimohigashi, C. H. Stammer and T. Costa, Synthetic Peptides in Biotechnology, Alan R. Liss, Inc. 1988, p. 203.
- 7 (a) W. Kullmann, Biochem. Biophys. Res. Commun., 1979, 91, 693; Biochem, J., 1984, 220, 405; J. Biol. Chem., 1980, 255, 8234; (b) F. Widmer, K. Breddam and J. T. Johansen, Peptides, 1980, Proc. 16th Europ. Pep. Symp., Scriptor: Kopenhagen, 1981, p. 46; (c) Y. Kimura, K. Nakanishi and R. Matsuno, Enz. Microb. Tech., 1990, 12, 272; (d) C.-H. Wong, S.-T. Chen and K.-T. Wang, Biochem. Biophys. Acta, 1979, 576, 247; (e) N. P. Zapevalova, E. Y. Gorbunova and Y. V. Mitin, *Bioorg. Khim.*, 1985, 11, 733. 8 E. N. Vulfson, G. Ahmed, I. Gill, P. W. Goodenough, I. A. Kozlov
- and B. A. Law, Biotech. Lett., 1990, 12, 597.
- 9 (a) S.-S. Wang, B. F. Gisin, D. P. Winter, R. Makofske, I. D. Kulesha, C. Tzougraki and J. Meienhofer, J. Org. Chem., 1977, 42, 1286; (b) T. Hoeg-Jensen, M. H. Jakobsen and A. Holm, Tetrahedron Lett., 1991, 32, 6387.
- 10 (a) A. Schwarz, D. Steinke, M.-R. Kula and C. Wandrey, Biotechnol. App. Biochem., 1990, 12, 188; (b) P. Clapes, P. Adlercreutz and B. Mattiasson, J. Biotechnol., 1990, 15, 323; Biotechnol. App. Biochem., 1990, 12, 376; (c) A. Zaks and A. J. Russell, J. Biotech., 1988, 8, 259; (d) J. S. Dordick, Enz. Microb. Tech., 1989, 11, 194; (e) A. M. Klibanov, Trends Biochem. Sci., 1990, 14, 141.
- 11 (a) M. A. Khaled, D. W. Urry and R. J. Bradley, J. Chem. Soc., Perkin Trans. 1, 1979, 1693; (b) A. Motta, D. Picone, T. Tancredi and P. A. Temussi, Tetrahedron, 1988, 44, 975; (c) C. R. Jones and W. A. Gibbons, Nature, 1976, 262, 779; (d) C. Garbay-Jaureguiberry, B. P. Roques and R. Oberlin, Biochem. Biophys. Res. Commun., 1976, 71, 558.

Paper 1/05722G Received 11th November 1991 Accepted 13th January 1992

^{*} Gly-GlyOEt, which was used in the present synthesis, is a good substrate for chymotrypsin, and is readily hydrolysed under different reaction conditions, e.g. in the absence of ethanol or at a higher water concentration.

[†] Note that the preparative yields of 3 and 4 are reported. Conversions greater than 95% were achieved in reactions I and II, allowing 'straight through' enzymic coupling of the di- and tri-peptides without their prior isolation.